

Leveraging novel simulation techniques to incorporate pharmacometrics in pharmacoeconomic models

J. Jaime Caro MDCM FRCPC FACP ASCPT Annual Meeting 2018 Orlando, FL

Typical PE Problem

How much does Intervention (I) change some Aspect (A) of Disease (D) to improve Outcomes (O) & affect Resource (R) use over Time (T)?

Typical PE Problem

How much does Intervention (I) change some Aspect (A) of Disease (D) to improve Outcomes (O) & affect Resource (R) use over Time (T)?

PE Models

OEvidera **PPD**

PKPD Models

OEvidera PPD

Typical Problem

Typical Problem


```
🐯 McGill
```

What is needed?

- Model concept that is natural
 - Accords closely with reality
 - Handles time accurately
- Very flexible
- Fast to create, easy to modify with new data or assumptions
- Able to examine the influence of assumptions ("structural" sensitivity analysis)
- Straightforward to review
- Simple to communicate
- Standard framework (easy to learn)
- Transparent, acceptable to stakeholders
- Preferably no need for additional software.

DICE simulation

What is DICE?

A modeling technique that conceptualizes the decision-analytic problem in terms of two fundamental aspects:

Conditions

- Aspects that persist over time
- Interested in time spent at a given level (value)
- Many conditions can be present at once
- Have levels, which can change & affect events

discrete integration

- Aspects that happen at a point in time
- Interested in number that happen (and when)
- Many can happen, at any time
- Can affect the level of a condition or other events

The essentials of DICE

10 OEvidera ppp

DICE View of Problem

List of conditions

- Name (unique)
- Level (at a given point in time)
- List of events
 - 💆 Name (unique)
 - Time of occurrence
- Consequences of each event
 - For itself (recurrence?)
 - For other events
 - ✤ For conditions
- Discrete-integrator
 - Read conditions list
 - Read event list
 - Process event consequences in sequence
 - End simulation & report results.

1. List SpecificationsActivityameLevelLo

2. List of events

Re	Events	
_	Name	Time To Event
Re	Start	Now
Sta	Respond	Formula _{Rx1}
	Relapse	Formula _{Rx1}

Start 3. Consequences of each event

Туре	Name	Expression
Condition	Activitystima	e ^H lime to Response
Event	Rresponse	Ln(1-rand())/-hazard
Output	QALYSet Act	voty = Lo
Output	Costs	e time to Relapse

Add up costs Relapse

11 OEvidera ppp

Implementation - software

12 OEvidera PPD

DICE Excel® Implementation

Conditions **1.** List of conditions Name Level Vital status Activity Treatment QALYs Cost "tables" **2.** List of events **Events** Death **Time To Event** Name Start Start Now Respond Never Relapse Never Start Expression Туре Name Condition Hi Activity Ln(1-rand())/-hazard Event Respond Output QALYs 0 Output

Costs

0

Getting the expressions to do something

Start

Туре	Name	Expression
Event	Start =	Never
Condition	Activity =	= Hi
Event	Respond	Ln(1-rand())/-hazard
Output	QALYs	0
Output	Costs	0
	-	

x∎ 📮	5 - ∂-	€ - №	, Ĉ	2 - 🔒		38 820	ĭ ¥ =
FILE	HOME	INSERT	PAGE	LAYOU	T FC	ORMULA	S DAT/
Activity		•	8 8 8	×	~	fx	
<u>Ev</u>	/ents						
	Name	Time T	o Eve	nt			
St	art	Now					
Re	espond	Never					
	atil Ex	3.7					

Do

'Loop through all events until Er

Microsoft

Conditions

Name	Level
Activity	Hi
QALYs	0
Cost	0

DICE loops

DICE Path Diagram

16 OEvidera ppp

Segmented Approach Using DICE: Advantages & limitations

• Very flexible & natural

- Can combine cohort, individual & time-to-event approaches
- Transparent, simple to communicate
- Standard framework (easy to learn)
- Less error-prone

18 OEvidera PPD

- Enables structural sensitivity analysis
- Straightforward to review
- Fast to create, easy to modify

- Excel is slow
- No individuals, interactions
- No resources, queues
- Does not handle continuous time